报告人:Professor Yiping Zhao(Department of Physics and Astronomy,University of Georgia, Athens, Georgia 30602)
联系人:刘全慧教授
时 间:5月23日15:00-17:00
地 点:物理楼307
ABSTRACT
Dynamic shadowing growth (DSG) is a simple nanofabrication technique based on physical vapor deposition with substrate manipulation and deposition source control. The geometric shadowing effect is the dominant growth mechanism. By programming the substrate rotation in the polar and/or azimuthal direction, nanorod arrays with different geometric shapes can be designed. In addition, by combining this directed substrate motion with a programmed deposition procedure, such as multilayer deposition or co-deposition, one can design complex and multifunctional heterogeneous or composite nanostructures. Based on the material and morphology, applications of nanorods designed by DSG have been extended to many different areas, from fundamental understanding of wetting phenomena to biomedical applications. In this talk, I will first discuss our recent efforts in designing functional materials by DSG, especially heteronanorod and composite nanostructure fabrications. Then I will highlight two applications: the design of optical chiral metamaterials and the utilization of active nanomotors. By combining two-dimensional colloid monolayers and DSG, we have recently demonstrated that various chiral plasmonic nanostructures can be fabricated with tunable response in visible to near-infrared wavelengths. By asymmetrically coating nanorod backbones with thin catalyst layers, self-propelled, autonomously moving nanomotors and motor systems can be assembled, mimicking naturally occurring biological motors. Finally, we have demonstrated that by incorporating active nanomotors into thrombolytic therapy for stroke, the effectiveness of the drug can be doubled due to the enhanced mass transport, which could significantly lower the dose of the drug administrated and reduce the risk of the intracranial hemorrhages.
Prof. Yiping Zhao
Professor, Department of Physics and Astronomy
Director, Nanoscale Science and Engineering Center
The University of Georgia
Athens, GA 30602
Tel: 706-542-7792
http://www.physast.uga.edu/~zhaoy/index.html
|